Chapter 3

Entity 1 Entity 2
- attributel ~ | - attributel
- attribute2 - attribute2

So, in our example, Entity2 is a part of (or subordinate to) Entity 1. If you destroy the
parent class (Entity 1) in an aggregation (weak) relationship, the child class (Entity 2)
can survive on its own.

Let's understand aggregations by using our example of the Order Management
System. Consider the OrderLine and Product classes. An OrderLine can have multiple
quantities of one Product. If an OrderLine is destroyed, it does not mean that we delete
the Product as well. A Product can exist independently of the OrderLine object. Here is
the relationship diagram between OrderLine and Product classes:

OrderLine Product
- orderLinelD - name
- orderID - code
Ko>——> I
- productID - unit price
- quantity

In the diagram, we can see an Aggregation relationship between OrderLine and
Product classes. Put simply, the above diagram states that if an order is cancelled,
all of the products will not be destroyed; they will only be "de-associated" from that
particular order.

Composition

A Composition is exactly like Aggregation except that the lifetime of the 'part' is
controlled by the 'whole'. For example: You have a 'student' who has a 'schedule'. If
you destroy the student, the schedule will cease to exist.

In this case, the associated entity is destroyed when the parent entity goes out of
scope. Composition is represented by a straight arrow with a solid diamond at the
tail, as shown below.

Entity 1 Entity 2
- attributel ' - attributel
- attribute2 - attribute2

[61]



ER Diagram, Domain Model, and N-Layer Architecture

In our case, Entity-2 is controlled by Entity-1. If Entity 1 is destroyed in a
composition (strong) relationship, Entity-2 is destroyed as well.

Let's understand compositions by using our example of the Order Management
System. Consider the Customer and Order classes. A Customer can have one or more
orders, and an Order can have one or more Products (in order lines). An Order object
cannot exist on its own without a Customer. So the following Composition indicates
that if a Customer object goes out of scope, the Orders associated with that Customer
go out of scope too.

Customer Order
- customerlD - orderlD
- customerID
- Name

<——— @ - status

Generalization Relationship

Inheritance is a very widely known and common feature of OOP. In UML,
inheritance is depicted using generalization relationships, depicted by a straight
arrow with a hollow arrowhead (triangle) at one end. A generalization relationship
(also known as a "is-a" relationship) implies that a specialized (child) class is based
on a general (parent) class.

Here is a diagram illustrating this:

Derived Class Base Class

- attribute - attribute

- attribute | ——— - attribute

Here, we can see that the arrow points in the direction of the base class. In our Order
Management System, we can have a base class for all customers; we can call it Person
class so that we have other classes derived from it, such as Customer, CSR (Customer
Sales Representative), and so on.

[62]



